

Frank Dick, P.E. City of Vancouver, Department of Public Works

TYPES OF INDUSTRIAL WASTE AND HOW THEY CAN IMPACT A TREATMENT PLANT

2

Types of Industrial Waste

Airport Deicing

Breweries

Electroplating

Fruits and Vegetable Processing

Semiconductor

Metal Finishing

Transportation Equipment

Dairy Products Processing

Effects on Collection System

Hydraulic Loading pH Blockages Odors Flammables Inhalation Hazards / Toxic Fumes Corrosion Reactive

Hydraulic Capacity

Large slug wastewater or continuous flow - sewer backup or pump station overflow - process disruptions at treatment plant Flow equalization Flow monitoring Slug discharge or flow control plan

Industries of Concern	
Dairy Products Processing	Breweries
Meat & Poultry Products	Electrical/Electronic Components
Transportation Equipment Cleaning	Soap & Detergent Manufacturing
Fruits & Vegetable Processing	Centralized Waste Treatment

Industrial Waste Treatment Volume I, Office of Water Programs CSU Sacramento http://www.foxeng.com/work/sequencing-batch-reactor-wastewater-treatment-plant/

рΗ

Acidic or alkaline wastewater - corrosion of sewer pipes and facilities Typical limits 5.5 - 10 on standard units scale (0 - 14) pH neutralization equipment Equalization Slug discharge control plans

Industries of Concern		
Dairy Products Processing	Breweries	
Meat & Poultry Products	Electrical/Electronic Components	
Transportation Equipment Cleaning	Soap & Detergent Manufacturing	
Fruits & Vegetable Processing	Centralized Waste Treatment	

Most Common Chemicals Used

Sodium Hydroxide	Hydrochloric Acid
Sulfuric Acid	Potassium Hydroxide
Sodium Hypochlorite	
Citric Acid	

Blockages

Fibrous or stringy materials Heavy solids Floatable solids FOG

> Drain traps Grease traps & interceptors Dissolved Air Flotation Precipitation / Clarifiers / Filter Presses

Industries of Concern	
Detention Centers (Jails)	Breweries
Meat Poultry Products	Transportation Equipment Cleaning
Restaurants	Dairy Products Processing
Fruits & Vegetable Processing	

Flammables

Petroleum fuels Plant based fuels / alcohols Organic solvents H2S

Toxic Fumes

Toxic organic solvents H2S Cyanide Chlorine Phosgene Arsine / Phospine

Solvent Mgmt Plans Lab Mgmt Plans

Toxic Fumes

Phosgene COCl2 Produced UV, O2, chloromethanes Disrupts blood-oxygen barrier in lungs - Suffocation Odor threshold 0.4 ppm, 4X TLV

Hydrogen Cyanide Colorless Flammable Extremely poisonous - binds to Fe in blood and Inhibits cellular respiration

Reactive

Sodium azide Hydrogen-producing reactions H2S-producing reactions Phosgene-productions reactions Solvent mgmt plans Lab mgmt plans

Hydraulic Loading

Large slug wastewater or continuous flow Decrease efficiency of treatment processes Increase solids carryover Unit processes such as neutralization, sedimentation, and biological treatment operate best at a constant flow rate

Flow equalization

Flow monitoring

Slug discharge or flow control plan

Industrial Waste Treatment Volume I, Office of Water Programs CSU Sacramento http://www.foxeng.com/work/sequencing-batch-reactor-wastewater-treatment-plant/

рН

Acidic wastewater Increased H2S production and odor Increased suspended solids from secondary clarifier such Decreased COD removal

Typical limits 5.5 - 10 on standard units scale (0 - 14) pH neutralization equipment Equalization Slug discharge control plans

Odors

H2S - sulfur bearing compounds Amines - nitrogen bearing compounds Putrescibles

Flammables

Petroleum fuels Plant based fuels / alcohols Organic solvents H2S

Toxic Fumes Toxic organic solvents H2S Cyanide Chlorine Phosgene Arsine / Phospine

A Word About Phosphine . . .

Essential for life of organisms Excess - toxicity *anti-microbial* Balance of binding with proteins & essential for numerous cellular functions - viability Intoxication - disrupts balance of functions especially oxidative stress and ability to take up carbon

Metals - Copper

Essential for life of organisms Excess - toxicity anti-microbial Oligodynamic effect Balance of binding with proteins & essential for numerous cellular functions - viability Intoxication - disrupts balance of functions - promotes development of oxygen reactive compounds Drinking water - 1.3 mg/L EPA Standard Organic ligand vs. metallic

Metals - Copper

Essential for life of aquatic life

Excess . . . Acute - mortality Chronic - survival, growth and reproduction (Brain function, metabolism, enzyme activity, blood chemistry)

Metals - Cadmium

Catalyst in forming reactive oxygen compounds Exposure:

- Uptake in plants from soils
- Cigarette smoke
- Workplace inhalation
- Low limits for Biosolids application
- Batteries, pigments, plastic stabilizers, platings, photovoltaics Buildup in kidneys - renal failures

Metals - Chromium

Inhibits respiratory activity and cellular growth activated sludge Inhibition of nitrification process Cr+6 Higher concentrations Cr+6 crosses membrane into cell & forms Cr+3

Lead

7-day toxicity much greater than 24-hour Particularly degrading to nitrification OUR responds quickly to addition of Pb

Developing nervous systems - children Wide range neurological effects Renal effects and gout Interferes and inhibits enzymatic and hormonal conversions e.g. Vitamin D

24

May inhibit cellular growth Accumulates in aquatic food chain - methylated form Treatment plants removed 90% of Hg

Ingestion of metallic mercury - typically 0.01% absorbed into body. For organic mercury, 95% Inhalation of vapors - 80%

Nickel

Inhibits respiratory activity and cellular growth – activated sludge Inhibition of nitrification process

Carcinogen (Ni compounds) Dermatitis

Effects on Plant Effluent / Receiving Waters

Bioaccumulation in aquatic life & food chain Hormonal disruptions Fish behaviorial disruptions

Anaerobic Digestion

Anaerobic systems have a narrower spectrum of life forms and are more sensitive to heavy metals

Microbeads

Tiny bits of plastic - soaps, cosmetics Can adsorb toxic compounds Ingested by fish

Microbead-Free Waters Act Of 2015

2017 !

Total Dissolved Solids

Minerals, salts, anions, cations, metals dissolved in water Typ. Magnesium, sodium, potassium, borates, chlorides, calcium, carbonates, sulfate

Affects to Whole Effluent Toxicity tests

General ROT: 1,500 mg/L or higher

Varies - hardness, composite of TDS, species tested

Dyes / Photoresist

Affects transmittance of UV light in water for disinfection

A Word on Perfluorinated Compounds

PFAS – perfluoroakyl substances
PFOA – perfluorooctanoic acid
PFOS – perfluorooctane sulfonate
Bioaccumulative, persistent
Possible growth inhibition, mortality

Water and stain resistant materials Keep food from sticking to packaging

A Word on Nonylphenols . . .

Highly toxic to fish, aquatic invertebrates, plants As low as 0.12 mg/L Industrial laundries Textile & paper coatings Adhesives Degreasers Deicers

Encourage uses of other alkylphenols

A Word on Sodium Azide . . .

NaN₃ Biocide in hospitals Similar to CO – attaching to hemoglobin

Reactive – acids

Dry & Wet Strength

Slosh Box – Reynold's # Correlation

 $Re = R_h V \rho / \mu$

Ratio of inertia force, and viscous (friction) force

20,000

8" sewer lines 2 fps 0.0022 slope

South Interceptor 1.5 fps 32 min (2,816 ft)

