

Planning Rolling with the Punches

Allison Pyrch, PE, GE

What Is Resilience?

The ability to withstand and/or recover quickly from difficult conditions.

Hazards

- Storms
- Floods
- Landslides
- Earthquakes
- Tsunami
- Fires
- Drought
- Climate/Sea Level Change

Hazard Levels

- *Routine* Hazard events are *more frequent*, less consequential events that cause *limited damage*.
- <u>Design</u> Hazard events are used to design structures; design loads are specified in building codes for many natural hazards.
- <u>Extreme</u> Events may also be defined in building codes for some hazards; they are less frequent and the most likely to cause <u>extensive</u> damage.

Changing Climate Change

Variations in average weather conditions that persist over multiple decades or longer that encompass increases and decreases in temperature, shifts in precipitation, and changing risk of certain types of severe weather events.

-DOD

Risks

- Infrastructure Damage
- Utility Damage
- Ecological Damage
- Human Risks/Casualties
- Personnel Difficulties
- Communication Loss
- Economic/Financial Losses

Resilience Planning - Overall Goal

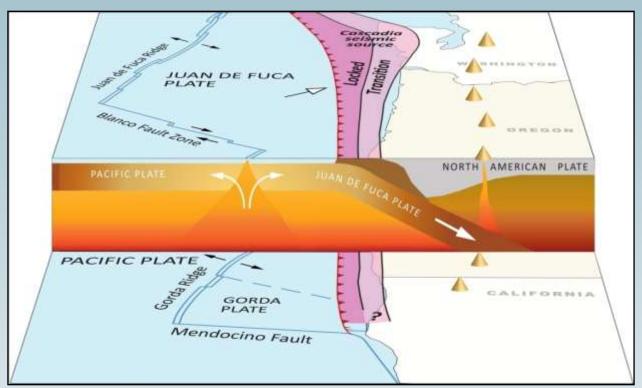
Mitigate Hazards and Reduce Risks to Decrease Response and Recovery Times

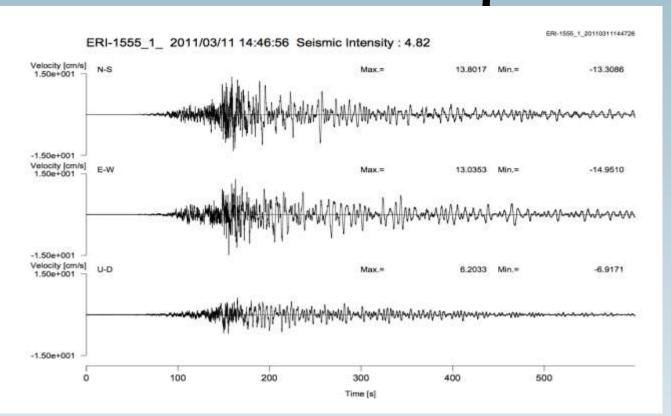
What Makes a Hazard a Disaster?

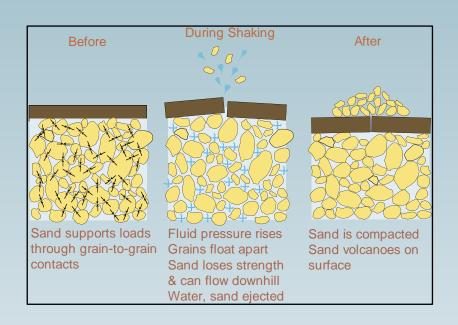
Unprepared = Disaster

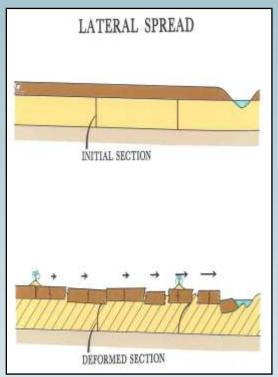
Rare but High Impact Events

- High Consequence
- Difficultly Understanding Risk
- Responsibility to Plan for


Examples: Cascadia and Climate Change




Subduction Zone Geometry



M9.0 Tohoku Japan

Liquefaction & Lateral Spreading

Observed Damage Patterns

- Shaking Damage
 - Weak Soils
 - Weak Infrastructure
- Tsunami Damage

Water and Wastewater Systems

Ground Shaking Damage

Structure Damage

Ground Shaking Damage

Landslides

Electrical Systems

Transportation

Weak Infrastructure

Transportation

Poor Soils – Embankment Failures

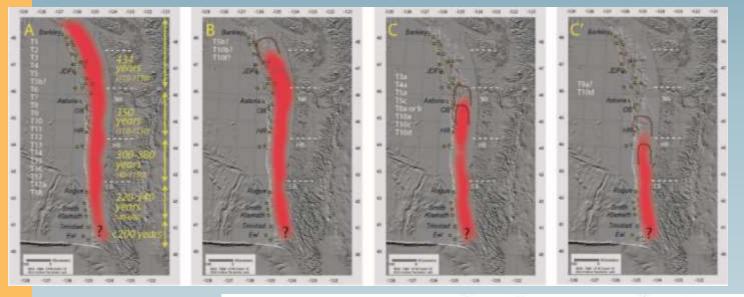

Overall Performance

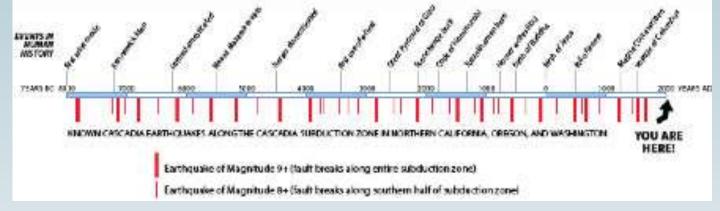
Successes

- Utilities Generally Operational within 1 week
- Relatively Quick Transportation Recovery

Failures

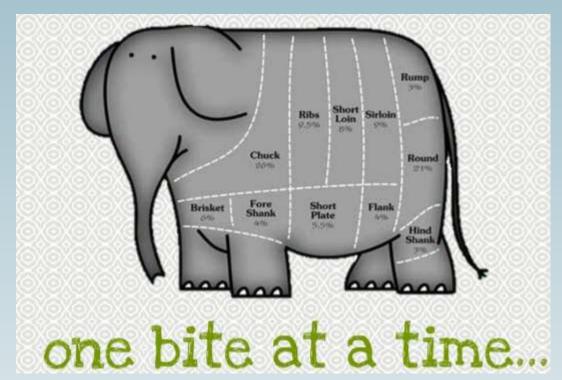
- Public Communication
- Large Numbers of Tsunami Deaths (Japan)
- Tsunami Areas and Industry
- Electrical Systems
- Fuel Shortages





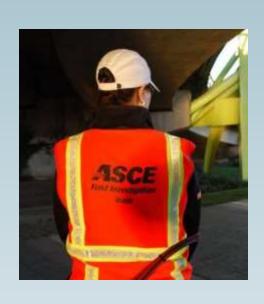
Pacific Northwest

- 1994 Oregon
 Building Code
 w/Seismic Design
 Provisions
- Inherited community infrastructure at-risk


Chris Goldfinger
Oregon State
University

Overwhelming Problem

Resilience Planning



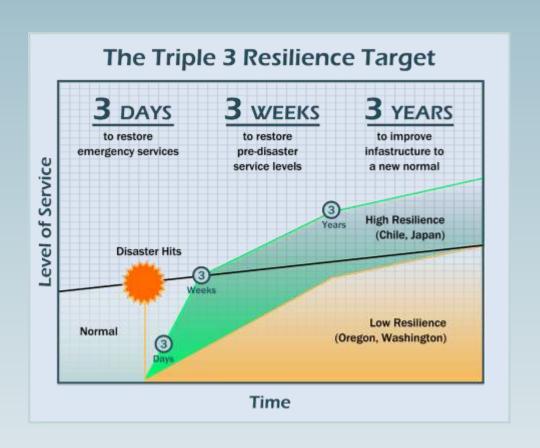
- Define Hazard
- Define Timelines
- Assess Risks
- Develop Cost/Benefit Analysis
- Prioritize
- Develop a Plan
- Incorporate Plan into Long Term Plans and Budgets

Pertinent Players

- Engineers
- Architects/Planners
- Maintenance & Operations
- Emergency Planning/Operations
- Financial/Business Development
- Public Health/Social Services
- Human Resources
- Education
- Private Organizations

Define Goals

Define the Hazard(s) of Concern


Return Interval and Likelihood

Develop Ideal Timeline for Recovery

- Define Specific Goals
- Response vs. Recovery

Specific Resilience Goals

Assets/Vulnerabilities

- Facilities
 - Structural
 - Non Structural
 - Equipment
- Material Resources
- Human/Personnel Resources
- Financial Resources
- External and Internal Relationships
- Public

Interdependencies

- Internal Systems
- External (utilities/infrastructure)
- Outside Coordination (other agencies)

Cost/Benefit

Cost

- Emergency Response
- Replacement and Repair
- Now vs. After
- Loss of Use
- Human/Personnel
- Public Perception
- Lost business investment

Value

- Resilient Infrastructure
- Availability for Emergency Response
- Continuity of Service
- Public Perception
- Value to Client/Other Agencies

Returns on Resiliency Investments

- FEMA average \$4 benefit for each \$1 spent
- UN Office of Disaster Risk Reduction 10:1
- Multi-hazard Mitigation Council 4:1
- American Society of Civil Engineers 6:1 for levees, 3:1 for other flood controls
- Rockefeller Institute: it costs 50% more to rebuild in wake of disaster than build resiliently

Prioritize

- Critical Facilities
- Personnel Resources
- Service Loads

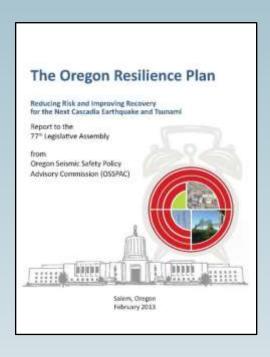
Prioritize

Develop a Plan

- Hazard/Timeline Defined
- Infrastructure Improvements
- Employee Prep Home and Work
- Office/Facility Prep
- Business Continuity
- Emergency Response
- Long-term Recovery

Incorporation into Existing Efforts

- Sustainability
- Transportation Planning
- Land Use Planning
- Master Planning
- Capital Improvement Plans
- Long-term budgeting
- Localized and Overall Emergency Plans
- Operations and Maintenance Plans


Long-term Funding for Improvements

- Consider carrying capacity of community
- Incremental Increases/Bonds
- Low Interest Loads W/WW
- Dedicate 1-5% of budget to resiliency investments

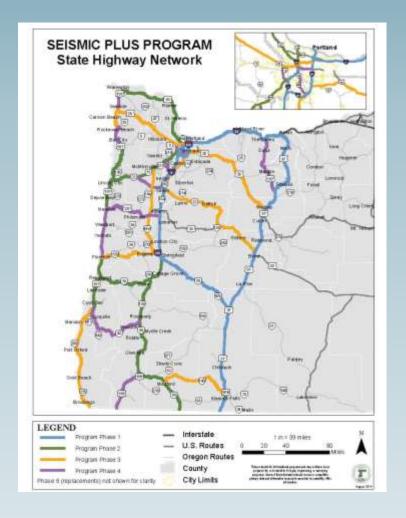
Existing Efforts

Oregon Resilience Plan

- 50 Year Plan for State
- Assessment of Current State
 - Coastal Communities
 - Business
 - Critical Buildings
 - Transportation
 - Energy
 - Communications
 - Water/Wastewater
- Months to Years of Recovery
- 1/5 of Oregon GDP Lost
- 10,000's Displaced

Oregon Resilience Plan

Critical Service	Zone	Estimated Time to Restore Service
Electricity	Valley	1 to 3 months
Electricity	Coast	3 to 6 months
Police and fire stations	Valley	2 to 4 months
Drinking water and sewer	Valley	1 month to 1 year
Drinking water and sewer	Coast	1 to 3 years
Top-priority highways (partial restoration)	Valley	6 to 12 months
Healthcare facilities	Valley	18 months
Healthcare facilities	Coast	3 years


Oregon Resilience Taskforce

- Recommendations
 - Resiliency Policy Advisor to Governor
 - Provide Revenue and Support for ODOT
 - Land Use Tsunami Planning
 - Energy
 - Fund Critical Facilities/School Grants
 - Resilience Research
 - Training and Education
 - Water/Wastewater
 - Recovery goal of 2-3 weeks

Plan and Prioritize

- Tier 1: Backbone system
 Restored within Hours to 3 Days
- Tier 2: Secondary system
 Restored with Days to Weeks
- Tier 3: Tertiary systems
 Restored with Weeks to Months

NIST Community Resilience Planning Guide

Better New Structures

- US Resiliency Building Rating System
 - Safety
 - Cost of Repairs
 - Time to regain functionality
- Similar criteria can be adopted for infrastructure

Develop Public-Private Partnerships

- Private sector Can Contribute:
 - significant assets
 - employment and wages
 - relevant knowledge, skills and resources
- Approach as long-term partner at beginning of process
- Make the business case for PW resilient investments

\$\$ Funding \$\$

- Federal grants and low-interest loans
- State programs
- Dedicated funds supporting infrastructure investments
- A PW resiliency plan can help support requests for tax revenues
- Identify no- or low-cost first steps

Foster Resilient Culture

Public Works



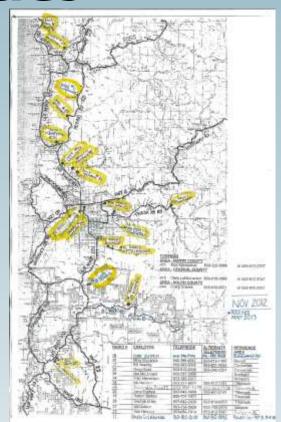
Personal Prep First!

- Emergency Family Plans
 - Children
 - Older Family Members
 - Meeting Place
 - Home Structural Improvements
 - Out of State Contact
 - Supplies!

Vehicles

- Life Straws
- Easily Portable Supplies
- First Aid and Safety Equipment/Tools
- Cash

In Your Facilities


- Operations and Maintenance Procedures
 - What is needed for
 - Everyday Operations Critical Systems
 - Response
 - Recovery

In Your Facilities

- Prepare an Employee Plan
 - During and outside of work hours
 - Field work/Equipment
 - Getting home/Coming back to work
- Map It!
- Identify Obstacles
- Employee Emergency Information

In Your Facilities

- Emergency supplies
 - Alternative water sources
 - Food
 - Cash
- Consider temporary housing
 - Short Term until they can get home
 - Long Term when they come back to work
 - Families and Pets

Incentives

- Educate!
 - Hazards/Risks
 - PW Importance
- Provide Materials
- Look for Deals/Offers
- Workshops
- Public/Agency/Private Education

Incentives

- Make it a Priority
- Walk the Walk (Lead by Example)
- Include all Levels in Planning
- Encourage Input
- Assign Responsibility
- Develop Regular Reminders
 - Include incentives
 - Contests/games
 - Checklists

