

Utilizing Remote Monitoring in Wastewater Collection Systems

By: Brogan Quist SmartCover Systems

Represented Locally by PumpTech, Inc.

Water Environment School 2017 Clackamas, OR

Outline

- 1. What is the Problem?
- 2. What are the current solutions?
- 3. Are there more solutions?
- 4. Case Studies and Examples
- 5. Other Problems/Applications

The Problem

I&I Issues

- Plant overloaded with rain water
- Expensive to find and treat
- Can cause surcharging

Sewer Spills

- Public Health Impact
- Monetary Hit: Fines, clean up costs, litigation
- Bad PR: News articles
- CSOs (capacity issues)

High Frequency Cleaning

 Costly, stress on resources and time

Pipe Life

- Old pipe means repairs need to start happening
- Can be up to millions of dollars to repair just a few miles of pipe
- Where do you start??

The Current Solutions

Manual monitoring

Regular cleaning

Replace, refurb, repair

Video Inspection

\$\$\$

Another Tool in Your Toolset

www.shutterstock.com · 256906645

More About the Technology

Ongoing data acquisition

Continuous level data collection

Automated trend analysis

- Predicts future events
- Visibility of unseen assets

High Reliability Communications

- Global, redundant satellite coverage
- Battery Powered
 - Independent of electrical grid and outages
- Fast, Easy, Secure User Access to Data
 - Web Browser access: computers, phones or tablets
- Alarms, Alerts & Advisories
 - Email, text message continuously informs users

Case Studies and Examples

I&I: Impact

Storm water stresses collection system capacity

Storm water can overwhelm treatment plant

Treating storm water is EXPENSIVE

Flow Estimation and I&I

Open Channel Flow Estimation can be applied to I&I studies through Manning's Equation

Advantages:

- No confined space entry
- Data sent directly to website
- Non-Contact with sewer (lower maintenance)
- Easier Mobility
- Long Battery Life

Overlay with Rain

- Uses Doppler Radar and other monitors for data source
- Provides hourly updates
- 1 km² (0.62 miles) area
- 0.001 inch sensitivity
- Downloads to spreadsheets

Examples

Sewer Spill Overflow (SSO) Prevention

California Water Environment Association Destacting our water environment through education and training.

Elimination of Sewer Overflows using a Continuous Real-Time Monitoring System

Rick Carver, City of Hawthorne Gregory Quist, Ph.D. & David Drake, Hadronex

Hawthorne Savings

SSO prevention Story #2 (of many)

Program Results:

\$ \$ **\$**

• Period 2009-2015

> 925 spills saved

- System coverage 0.3%
- Gross savings ~ \$4.9MM
- NET SAVINGS ~ \$2.7MM

	SCs			SSO Clean Up Cost Fines from CD after	
Year	Managed	Cost	SSOs Saved	2013 (5k per SSO)	EPA CD Fine
2009	10	\$ 40,152.83	10	\$ 50,000.00	
2010	25	\$ 49,952.90	17	\$ 85,000.00	
2011	75	\$ 311,366.20	8	\$ 40,000.00	
2012	120	\$ 471,761.78	74	\$ 370,000.00	
2013	198	\$ 498,439.24	116	\$ 580,000.00	\$ 31,500.00
2014	237	\$ 598,545.70	534	\$ 2,670,000.00	\$ 240,300.00
2015	300	\$ 277,132.24	166	\$ 830,000.00	\$ 74,700.00
		\$ 2,247,350.89	925	\$ 4,625,000.00	\$ 346,500.00

4,971,500.00	Cost Savings
2,247,350.89	Cost of SC Program
2,724,149.11	SAWS saved

Building on Success...

SSO Prevention: Lift Station Back Up

Independent, Redundant Monitoring "Solution"

- Battery powered- off the grid
- Satellite radio- running while cellular may be overloaded or down

Complements SCADA

- Lift station back-up
 - Power loss from severe storms/lighting strikes
- Pump failure or partial failure

22Jan14

SmartCover Monitoring at Lift Stations when Everything Else Goes Down

"At approximately 2AM on New Year's Day a drunk driver on El Segundo Boulevard collided with not one but two Edison power poles. This knocked out the power to more than 4,000 SoCal Edison customers in the city of El Segundo.

Because we have SmartCover units installed on our lift station wet wells we were able to get alarms with level measurements on our emergency on-call phones. This technology enabled us to prioritize which lift stations were most critical to respond to with backup generators and emergency pumps.

Part way through the 18 hour outage the power was temporarily restored and the generators and pump were broken down and put away. On call employees

returned home and one hour later we began **receiving SmartCover** level alarms once again. Apparently the temporary restoration was short lived as other parts of the electrical distribution system were overloaded and were knocked out as well.

We redeployed our emergency generators and three staff members shuttled two generators from station to station, avoiding any spills on the four stations that remained without power.

To complicate things the internet was down at my office so I

used my smartphone to access the SmartCover website. This worked out **really slick** as I could check levels at the different stations and know where to tow the generators next.

Any spill from a lift station would have been catastrophic as the volume from a wet well would be much greater than a typical SSO and the City of El Segundo is directly adjacent to the Pacific Ocean.

Thank you Hadronex for a great product and staff support that came

through when needed. Because of our SmartCover deployment I was able to enjoy the holidays rather than writing up spill reports." *Gil Busick, Wastewater Supervisor for City of El Segundo*

SmartCover[®] technology helped prevent SSO events during a serious power outage.

CSO Monitoring

City of Newburgh City Hall - 739 NEWB

You are logged in as: gquist :: Super Admin :: Switch Organization :: Logout

Start, Stop, Duration, Volume

Regulator #2

Calculates:

Start, Stop, Duration, Volume

2016-10-26 15:20 - 2016-10-28 15:20 SmartFLOE(TM) Total Flow: 2.17 MGallons 14 12 10 8 MGD 6 4 2 0 10-26-16 15:00 10-26-16 21:00 10-27-16 09:00 10-27-16 11:00 10-27-16 15:00 10-27-16 17:00 10-27-16 21:00 10-27-16 23:00 10-28-16 03:00 10-28-16 07:00 10-28-16 13:00 10-26-16 17:00 10-26-16 19:00 10-26-16 23:00 10-27-16 01:00 10-27-16 03:00 10-27-16 05:00 10-27-16 07:00 10-27-16 13:00 10-27-16 19:00 10-28-16 01:00 10-28-16 05:00 10-28-16 09:00 10-28-16 11:00 10-28-16 15:00

High Frequency Cleaning

High Frequency Cleaning demands resources ...

- Personnel
- Equipment
- Management
- Capital funding (trucks)

High Frequency Cleaning Impacts Assets

Accelerates wear on pipes

And the cycle never ends...

Without Automatic Trending Software

Trend Analysis Breaks the Cycle

New Protocol using Monitoring and Data Trend Analysis

- Scans and detects of level/flow changes
- Identifies anomalous level/flow change
- Automatically sends email "Advisory"
- Enables prioritized focus and action

Transformational Effect

- PREDICTIVE: Transforms response from *reactive* to *planned*
 - Drives maintenance based on real-time data
 - Lowers frequency of cleaning
 - Reduces risks of cleaning

Pilot: ROI with Optimized Cleaning

Real-Time Condition Assessment Pilot:

SAWS (San Antonio Water System) 10 HFC sites scheduled at once/month cleaning Result: 94% reduction of cleaning = savings

Estimates of savings (SAWS): \$2.5K - 4.0K/year/site (net)

Decreased visits mean:

- decreased fuel and time
- decreased staff risk e.g., time in traffic
- decreased carbon footprint

Results to be presented at WEFTEC

A New Way to Do the Same Old Thing: Using the Internet of Things for Maintenance Optimization Tamsen McNarie¹, Stanley Griffith², Gregory Quist³, Keith Lewinger³

- 1. San Antonio Water System (SAWS), TX
- 2. City of San Diego, CA
- 3. SmartCover Systems, Escondido, CA

Summary of the Project

A common means for reducing sanitary sewer overflows (SSOs) is performing high frequency cleaning (HFC) in areas having a history of spills or otherwise identified as high risk locations. High risk locations

Status of Pipe Life

Condition Ranking System

Table 8. Condition state and rehabilitation priorities						
Condi- tion state	Implication	Impact rating	Rehabilitation priority			
5	Failed or imminent failure	1 to 5	Immediate			
4	In bad condition,	5	Immediate			
	high structural risk	1 to 4	High			
3	In poor condition,	4 to 5	Medium			
	risk	1 to 3	Low			
2	In fair condition,	5	Medium			
	minimal structural risk	1 to 4	Low			
1 or 0	In good or excellent condition	1 to 5	Not required			

Capital Project Prioritization: Elsinore Valley Municipal Water District

35,000 connections 96 square miles 2 treatment plants 283 miles of sewer line 12 miles of force main 31 lift stations 5,664 manholes

Saving \$\$ Through On-Going Monitoring

Consulting engineering capacity study recommends up-sizing pipeline: INSUFFICIENT CAPACITY

Project Cost: \$29 million

Level data collected over several years...

Transformational Change

Using technology to...

- Acquire Real-Time Knowledge versus guessing from history
- *Find* I&I through less expensive techniques and monitoring
- Optimize processes using data instead of manage by opinion
- Save Sewer spills before they occur

Questions?