Current Trends in Digester Mixing Technologies

Becky Daugherty Brian Hemphill

Outline

Importance of Digester Mixing Digester Mixing Technologies Current Trends Case Studies Design Considerations ♦ Q & A

Digester without Mixing

Short Circuiting
Stratification
Scum Mat Buildup
Grit Accumulation

Importance of Good and Reliable Mixing in Digesters

- Provides uniform environment for microbes
- Maintains contact between active biomass and incoming feed sludge
- Enhances biological reaction rates
 - Improves VSS reduction efficiency
- Increases gas production
 - more pronounced at lower HRTs
- Reduces short-circuiting optimizes HRT
- Reduces process upsets
- Improves operating safety margin
- Minimizes grit accumulation

Mixing Design Parameters

 Digester volume turnover time (DVTT) =(tank volume/pump capacity)

Does not consider velocity (\rightarrow power); or viscosity

Unit power (UP)
 = (pump horsepower/tank volume/1000)

Inconsistent HP calculation; ignores viscosity

RMS velocity gradient (VGT or G)
 = (pump power/tank volume/sludge viscosity)

Better but good viscosity info hard to come by

Mixing Design Parameters

- Best approach is <u>probably</u> CFD modeling
 This is expensive and not definitive
 Complications:
- Inlet feed and outlet hydraulics likely play a big role
- There is natural mixing that occurs due to gas production and by inlet hydraulics
- Nearly impossible to get real world side-by-side realistic comparisons

Digester Mixing Technologies

Gas Mixing

Mechanical Mixing

Gas Mixing

- Compressed Digester Gas Recirculated through the Digester
- "Unconfined" Mixing
 - Sequential discharge to individual lances

"Confined" Mixing

- Eductor tube acts as gas lift pump to recirculate digester contents
- Bubble gun generates large bubbles that act as a gas lift pump

Gas Mixing – Unconfined System

- Compressed digester gas recirculated through gas lances
- Sequential discharge to individual lances using rotary valve

 Gas/liquid mixing plume increases in diameter as it rises to the surface

> Courtesy of US Filter

Gas Mixing – Unconfined System

Gas Mixing – Unconfined System

Gas discharge lance Removable while digester is in service

Courtesy of US Filter

Gas Mixing – Confined System

- Eductor Tubes Release compressed gas inside digester
- Eductor tube acts as a gas lift pump
- Creates upward mixing pattern

Gas Mixing – Confined System

- Bubble Gun Generation every 3 to 4 seconds per Mixer
- Turbulence created at surface prevents scum buildup

Courtesy of Infilco

Mechanical Mixing

- Non-clog, Axial Flow Propellers
- Often Located Inside Vertical Draft Tubes (a.k.a. Draft Tube Mixing)
- Provides Tangential Mixing Pattern inside Digester
- Reversible Mixing Pattern
- Roof Mounted Equipment
- Optional Heat Exchanger Jacket

Mechanical Mixing – Draft Tubes

• Platform Mounted

Courtesy of OTI

Mechanical Mixing – Draft Tubes

Courtesy of OTI

Mechanical Mixing Installations

Internally Mounted

Externally Mounted

Courtesy of Westech

Vertical Linear Mixers (VLM)

Gresham LMM Installation

Linear Motion Mixer Floating Cover Digester

Pump Mixing

- Axial Flow, Screw Centrifugal, or Chopper Type Pumps
- Draw Sludge from Bottom or Top of Digester
- High-velocity Discharge through Nozzles
 - Perimeter Nozzles
 - Internal Nozzles
- Continuous or Intermittent Operation

Pump Mixing Nozzle Design Alternatives

Perimeter-Mounted Nozzles

Internal Floor-Mounted Nozzles

Pump Mixing – Perimeter Nozzles

Pump Mixing – Internal Nozzles

Chopper Pump with Internal Mixing Nozzles

Courtesy of Vaughan/Rotamix

Pump Mixing – Internal Nozzles

Courtesy of Vaughan/Rotamix

Current Trends

1983 ASCE Nationwide Survey of Anaerobic Digesters

- 90 WWTPs from 39 states responded
- Active mixing was found to be the most significant factor in reducing volatile solids
 - 13 WWTPs reported "Inadequate" Mixing but still reported >50% VSS Reduction

1983 Survey Results

2005/06 Carollo Survey

55 WWTPs in 6 Western States Responded WWTP Capacities Between 3 and 320 mgd PS/TWAS was Most Common Feed Sludge VSS Reduction Varied Between 44 and 68% (50 to 55% Most Common) HRT Varied Between 15 and 45 Days (Median was 20 Days)

2005/06 Survey Results

Survey Comparison

2005/06 Survey – Frequency of Problems

2005/06 Survey – Reported Problems

Gas Mixing

- Compressor failure/extensive maintenance
- Pipe leaking
- Pipe plugging
- Digester foaming
- Poor mixing

2005/06 Survey – Reported Problems

Mechanical Mixing

- Impeller ragging
- Vibration problems

2005/06 Survey – Reported Problems

Pump Mixing
 Foaming
 Pump Clogs

Digester Mixing Rating

Rating System

• Score of 1 to 5 (1 = worst, 5 = best)

Average Ratings

Survey Summary

Increasing Trend in Use of Pump Mixing

- Pump Mixing is Often the Simplest Retrofit Alternative
 - Lowest cost alternative in most cases

 O&M Concerns are Key Drivers for Selection of Mixing Technology

Case Studies

Monterey, CA

- 30 mgd design ADWF
- 4 86-ft diameter digesters
- Unconfined gas mixing system using discharge lances

Case Studies – Monterey, CA

Concerns with existing system

- Routine and unexpected leaks in digester gas piping
- Significant maintenance requirements on digester gas compressors
- High water requirement on digester gas compressors (50,000 gallons per day)
- Outdated electrical system
 - Replacement parts were difficult to find
- Improper mixing resulted in significant solids accumulation at bottom of digesters
 - Required frequent cleaning

Case Studies

Eugene, OR

- 49 mgd design ADWF
- 3 85-ft diameter digesters
- Unconfined gas mixing system using diffuser rings

Case Studies – Eugene, OR

Concerns with existing system

- Incomplete mixing
 - active volume of digesters only 63% of total volume based on tracer study
- Replacement parts for the compressed digester gas system are difficult to obtain

Case Studies – Economic Comparison

Installed Cost

- Similar for the three systems (±10%)
- Maintenance Cost
 - Highest for gas mixing system
 - Based on operator input and results from 2005/06 survey
 - Can vary based on plant-specific factors

Power cost

Lowest for pump mixing system operated intermittently

Case Studies – Non-Economic Comparison

	Mixing Technology	Advantages	Disadvantages	
	Gas Mixing	No moving equipment	Explosive gas hazard	
		submerged	 Compressor operation and maintenance 	
			Potential for gas leaks	
		and numn MIV		
2		A Shake U	Large wall penetrations	
		 Mixer can reverse pump flow 	 Roof mounted motors are more difficult to maintain 	
		 Multiple mixers provide added reliability 	 Prone to clogging with rags 	
	External Pump Mixing	 Low explosive hazard 	Piping/nozzles inside digester (difficult to access)	
		 Easier equipment access 	digester (difficult to access)	
		 Chopper pumps macerate rags and debris 		
rc0406sfbs		 Lower maintenance 		

Case Studies – Plant Specific Factors

Struvite (NH₄MgPO₄) build-up

- Precipitation can lead to clogged pipes
- Struvite deposits most often occur at locations of local turbulence (pipe fittings, valves, pumps)

Energy Costs

 Peak demand charges can influence equipment's life cycle cost

Case Studies

Monterey, CA

- High energy cost shifted economic to favor the use of intermittent pump mixing
- Rotamix system has been installed in one of four digesters
- Eugene, OR
 - Struvite concerns shifted the analysis to favor the use of external draft tubes
 - 3 digesters were converted

Design Considerations

Pump Mixing Design Considerations

- Provide 1 or 2 Pumps per Digester
- Size Pump based on 8 Turnovers per day (or 1 turnover every 3 hours)
- Pump Venting needed for Intermediate Operation
- Provide 1 to 2 Mixing Nozzles per 100,000 cf of Volume
- Size Nozzle for discharge velocity between 20 to 30 fps
- Size Digester Piping between 5 to 8 fps
- Check Pump hp is within 0.2 to 0.3 hp/1,000 cf

Mechanical Mixing (Draft Tubes) Design Considerations

- Provide minimum of 4 External Mixers on Digesters greater than 70 ft in diameter
- Consider Both Upflow and Downflow Mixing in Design of Draft Tubes
- Consider Insulating Exposed External Draft Tubes
- Provide Mixer Motors rated for Class I Div 1 service
- Check Total Mixer hp is within 0.2 to 0.3 hp/1,000 cf

Gas Mixing Design Considerations

Don't do it unless you have to!

 Consider Pump Mixing or Mechanical Mixing Systems instead

Digester Mixing Selection

Factors affecting selection of digester mixing technology

- Digester size
- Digester shape
- Sludge type (primary, secondary, or mixed)
- Mixing system reliability

Digester Mixing Technology Cost Comparison

	Gas Mixing	Mechanical Mixing	Pump Mixing
Equipment Cost	\$97,000	\$300,000	\$147,000
Notes:			
(1) Based on vendor quotes for an 80-foot diameter digester			
(2) Includes associated piping costs.			
(3) Does not include installation costs.			

Other Observations

 Use of Mechanical Mixing in Egg-Shaped Digesters

 Difficult to Retrofit Using Draft Tubes

- Large sidewall penetrations
- Selection of Pump Mixing for Cylindrical Digesters

Comparison of Digester Pump Mixing Alternatives

Perimeter-Mounted	Internal Floor-
Nozzles	Mounted Nozzles
 Three nozzles located around	 Four floor-mounted nozzles
each tank perimeter to create	inside each tank to produce a
spiral mixing pattern	dual-zone mixing pattern
 Five side wall penetrations per	 Two sidewall penetrations per
tank	tank
 Requires more piping and larger	 Requires less piping and
diameter piping	smaller diameter piping
Proven Carollo design	 Vendor guarantee on mixing
• \$904,000 w/outdoor pumps	• \$714,000 w/outdoor pumps

Mixing Pump Location Evaluation

	Advantages	Disadvantages
Outdoor Installation (adjacent to each digester)	 Simplifies construction sequencing (shorter construction period) Less piping required Readily accessible for O&M needs 	 Aesthetics and noise concerns Electrical equipment needs to be Class I, Div 2 minimum when located adjacent w/in 10' of digester
Indoor Installation (w/in digester control building)	 Equipment protected from weather All pumps centrally located in one area 	 More complex construction sequencing (longer construction period) More piping required in tunnel areas Electrical equipment needs to be Class I, Div 2 minimum when located inside building May trigger upgrade of electrical equipment inside building to meet Class I, Div 2 requirements (\$50,000 to \$250,000)

Pump Mixing

- Axial Flow, Screw Centrifugal, or Chopper Type Pumps
- Draw Sludge from Bottom or Top of Digester
- High-velocity Discharge through Nozzles
 - Perimeter Nozzles
 - Internal Nozzles
- Continuous or Intermittent Operation

Courtesy of Vaughan/Rotamix

Digester Mixing Cost Comparison

Item	Confined Gas Mixing	Mechanical Mixing	Pump Mixing
Installed Cost	\$880,000	\$785,000	\$745,000
Present Worth of O&M Cost	\$268,000	\$209,000	\$89,000
Total Present Worth Cost	\$1,148,000	\$994,000	\$834,000

Notes:

- (1) Based on vendor quotes for an 85-foot diameter digester.
- (2) Based on present value of 20 years of annual costs at 6% interest.
- (3) Based on an estimated O&M labor week of \$50/hour depending on complexity of the equipment: 9 hrs/week for gas mixing, 7 hrs/week for mechanical mixing, 3 hrs/week for pump mixing.

Comparison of Surveys – Frequency of Problems

Design Criteria Comparison for an 85-ft Diameter Digester with 27-ft SWD

Item	Confined Gas Mixing	Mechanical Mixing	Pump Mixing
Manufacturer	Infilco	OTI	Vaughan/Rotamix
Number of Compressors	1	N/A	N/A
Number of Mixers	N/A	4	N/A
Number of Pumps	N/A	N/A	1
Energy, hp (total)	32	40(1)	37.5 ⁽²⁾
Energy Input, hp/1,000 cf	0.20	0.26	0.24 ⁽²⁾
Turnover Rate, minutes	29	28	30 ⁽³⁾

Notes:

- (1) Based on equipment manufacturer's design for continuous operation using four mixers at rated 10 hp.
- (2) Based on equipment manufacturer's design for intermittent operation (2 hours on/off cycle), which is equivalent to 50% of the rated 75 hp mixing pump.
- (3) Adjusted value considering nozzle entrained flow velocity of 40 fps.