Odor Control Technology Overview

Presenter: Ken Galardi, PE
Senior Engineer – Odor Control
CH2M HILL, Corvallis, OR
Presentation Outline

- General Approach to Odor Control
 - Odor Containment
 - Ventilation
 - Odor Collection

- Vapor Phase Treatment Technologies
 - Packed Tower Chemical Scrubbers
 - Carbon Adsorption
 - Biofilters
 - Biotowers
 - Activated Sludge Diffusion
 - Thermal Treatment
 - Other technologies
 - Multi-Stage Treatment
 - Dispersion

- Technology Selection

- Q and A
How We Select Odor and Air Emissions Prevention Systems

1. Using Odor Control Goal(s) at Property Line and Meeting/Exceeding Air Quality Requirements, Establish Design Targets

2. Determine Ventilation/Containment Requirements

3. Determine Control Requirements (Dispersion Modeling)

4. Find the Right Solution for Air Quality and Odor Prevention

5. Show Results through Modeling and Monitoring
Odor Containment

- Covers
 - Structural Considerations
 - Material Considerations
 - Features
 - Walkable?
 - Accessibility?
 - Hatches?
 - Leakage Rates
 - Acceptance Criteria: Infiltration ≤ 0.5 cfm @ - 0.2” WC
Odor Containment

- Enclosures/Hoods/Curtains
 - Accessibility
 - Capture Efficiency

- Launder Covers
 - Lower Cost
 - Better Accessibility
 - Lower Air Flow
 - Quiescent Zone Still Exposed
Ventilation

Criteria:
- Safety and Operator Comfort
 - Minimum 12 ACH @ Occupied Areas
 - Truck Loadout Areas: 12 – 20 ACH
- NFPA 820 “Standard for Fire Protection in Wastewater Treatment and Collection Facilities”
 - Minimum -0.1-inches WC
 - 50 fpm Face Velocity across Open Hatches
 - Scavenging to Reduce Corrosion

Fans:
- FRP, SST
Odor Collection

- Collect @ Source
 - Balance System
- Duct Material Types:
 - FRP
 - Type 316 SST
 - Type 304 SST Lined
 - Aluminum
 - HDPE
Vapor Phase Treatment Technologies

- Chemical Wet Scrubbers
- Activated Carbon
- Biotechnologies
 - Biofilters
 - Biotowers
- Thermal Treatment
- Activated Sludge Diffusion
- Multi-Stage Treatment
- Others?
 - Masking Agents/Counteractants
 - Ionization
Packed Tower Scrubbers

Absorption & Oxidation
- H2S absorbs more readily @ high pH
- NH3 absorbs more readily @ lower pH
- Oxidation improves mass transfer

Mist Scrubbers: Older technology, slow adjustment to inlet peak loadings
Packed Tower Scrubbers

Advantages
- Effective removal for high H_2S concentrations
- Can be effective on ammonia (acid chemistry)
- Lower space requirements than biofilters or biotowers (but needs space for chemical storage)
- Effective on varying odor load concentrations
- Effective treatment on day one

Disadvantages
- Requires observation and periodic cleanings
- Can be impacted by freezing conditions
- Chemical handling (safety) and related costs
- Limited effectiveness on organic based odors
- Potential residual chlorine smell
- Higher first costs due to chemical storage
- Mechanically complex system
Packed Tower Scrubbers

- Suppliers & Photos
 - Evoqua Water Technologies
 - Daniel Company
 - ECS
Carbon Adsorption

- Physical adsorption of odor compounds
 - Physical Adsorption: Intermolecular forces of attraction between molecules (London dispersion forces)

- Activation of carbon creates large surface area (high temperatures)

- Systems must be designed for media replacement

- Limitations regarding targeted odor constituents
 - H_2S - good
 - Ammonia – bad

- Carbon types

Typical Dual-Bed Carbon System Schematic
Carbon Adsorption

Carbon System Options
- Sweet Streets
- Skid Mounted
- Single Bed
- Dual Bed
- Radial Flow
- Quad-Bed

Suppliers
- Evoqua WT
- ECS
- PureAir
- Daniel Company
- Spundstrand
Carbon Adsorption

- **Advantages**
 - Simple to operate, small (compared to biofilters), low cost
 - High rate effective for medium H_2S loadings (≤ 20 ppm H_2S)
 - Virgin activated can remove a wide range of organic compounds
 - Virgin activated good for polishing
 - Effective treatment on day one

- **Disadvantages**
 - Quickly used in high H_2S environments
 - Replacement can be expensive and labor intensive
 - Can be moisture sensitive
 - Can cake due to grease
 - Safety issues with media change-out
 - Pressure drop through media high
 - Media disposal issues
 - High water usage for water washable carbon
General types of biofilters:
- Open vessel systems
- Closed-vessel systems
- Packaged Systems
Biofilters

Media Types:

- **Organic (natural)**
 - soils (topsoil or permeable sandy loams)
 - bark and wood chips (bulking agents)
 - compost (yard waste, sludge)
 - sea shells
 - peat
 - rice hulls

- **Synthetic**
 - perlite
 - plastics
 - ceramics
 - expanded clay
 - pumice or lava rock
 - Manufactured (engineered long life)
Biofilters

- Suppliers and Photos:
 - Bohn (soil)
 - Biorem (Coated)
 - Enduro (Clay)
 - Bord Na Mona (monafil, seashell)
 - Global Environmental Solutions (Lava)
Biofilters

Advantages
- Relatively Simple O&M
- No chemicals
- Relatively effective for compounds other than H₂S
- Package units available for smaller airflow
- Multiple vendors available
- Long life media systems are available

Disadvantages
- Space intensive
- Tend to have a residual *low-level* musty smell
 - media dependent
- Media Replacements
 - Long life 10-20 year media available but limited vendors
 - Upper limit on H₂S concentrations they can handle
 - Sustained levels over 50 ppm problematic
- Must remain moist
- Requires acclimation and need to stay online once acclimated
Biotowers

- Similar look to packed tower chemical scrubbers
- Media Types
 - lava rock
 - inert (“plastic”) media
 - inert foam media
 - expanded clay
- Top spray
 - constant or intermittent
- Requires acclimation and seeding
- Often use plant water as nutrient source
 - but may require nutrient addition
- Typical 10 to 30 seconds EBRT
Biotower Vendors & Photos

- Biorem
- Enduro
- Daniel Company
- GES
- BioAir
- Others: Azzuro, ECS
- Evoqua
Biotowers

Advantages
- Fully inert long life media (guaranteed 10 years)
- Shorter empty bed contact times than Biofilters
 - 10 to 20 seconds typical
 - Smaller footprint than biofilters
- Can handle *very high* \(\text{H}_2\text{S} \) loads
- Elevated stack dispersion
- Multiple vendors available
- No chemical handling/use
- Multi-stage beds can target organic compounds

Disadvantages
- Strong \(\text{H}_2\text{S} \) track record, but can be less effective on organic-based odor compounds
- More complex than biofilters
- Pressure drop higher than organic biofilters
- Leachate is acidic
- Can use large amounts of water
- Nutrient feed
- **Acclimation required and must stay online**
Activated Sludge Diffusion

Description
- Collect odorous air, direct to suction side of process/aeration blowers
- Diffuse into activated sludge basins via fine-bubble or coarse bubble diffusers
- Odors removed via absorption and biological oxidation

Advantages
- Effective odor control for a wide range of compounds
- Simple operation
- Low first cost if diffused aeration already exists
- No additional land use

Disadvantages
- Lower removal efficiencies w/coarse bubble (95%)
- Blower corrosion (sulfuric acid)
- Fine bubble diffusers can become plugged
- Matching air flows can require complex controls
Thermal Treatment

- **Description**
 - Destroys odors by converting them to fully oxidized compounds
 - Through combustion
 - Byproducts non-odorous or less odorous

- **Technology Examples**
 - Incinerators, Flares
 - Recuperative Thermal Oxidizers/Regenerative Thermal Oxidizers (RTO’s)
 - Combustion air source for digester gas engines or boilers

- **Advantages**
 - Effective odor control for a wide range of compounds
 - Effective VOC control

- **Disadvantages**
 - Potential for SOx or NOx emissions
 - Equipment complexity
 - Costs !!!!
Other Technologies

• **Ionization**

 Hydroxyl Ion Fog

 - **Description**
 - Simulates troposphere droplet chemistry to oxidize H_2S
 - Ion tubes generate electromagnetic field which ionizes O_2

 - **Advantages**
 - Simple, no chemical deliveries

 - **Disadvantages**
 - Impacts of ozone on materials
 - Personnel exposure?
 - Effectiveness is not proven and would need to be field pilot tested
Other Technologies

Counteractants

- Two categories
 - masking agents (perfumes)
 - reactants
- Chemistries are not well defined
- Can be direct surface application
- More often spray atomized around or above the odor source
- Interference reactions
 - Removes “perception of odor”
Multi-Stage Treatment

2-stage
- Multi-Stage Chemical Scrubbers
- Chemical Scrubber + Carbon
- Chemical Scrubber + Biofilter
- Biotower + Chemical Scrubber
- Biotower + Biofilter
- Biotower + Carbon

3-stage
- Biotower + Chemical Scrubber + Carbon
- Biotower + Biofilter + Carbon
Dispersion

- Dilution of odors as they disperse through air
 - Weather
 - Buildings (downwash effects)
 - Topography
 - Stack exit velocity
 - Stack height
 - Temperature of air stream

Dispersion Modeling

Point source vs. area source

Visualization of a buoyant Gaussian air pollutant dispersion plume
Gas Phase Treatment Technologies
Selection

Initial Screening

- Thermal Treatment
- Wet Scrubbers
- Activated Carbon
- Biotechnologies
 - Biofilters
 - Biotowers
- Ozone and Ionization
- Others?
 - Combination systems
Gas Phase Treatment Technologies Selection

- Qualitative Analysis
Gas Phase Treatment Technologies Selection

- Qualitative and Cost Benefit Analysis

![Graph showing benefit to cost ratio for different odor control technology alternatives.](Image)
Questions?

Ken Galardi, P.E.
Ken.galardi@ch2m.com