

Presentation Outline

- General Approach to Odor Control
 - Odor Containment
 - Ventilation
 - Odor Collection
- Vapor Phase Treatment Technologies
 - Packed Tower Chemical Scrubbers
 - Carbon Adsorption
 - Biofilters
 - Biotowers
 - Activated Sludge Diffusion
 - Thermal Treatment
 - Other technologies
 - Multi-Stage Treatment
 - Dispersion
- Technology Selection
- Q and A

How We Select Odor and Air Emissions Prevention Systems

1. Using Odor
Control Goal(s) at
Property Line and
Meeting/Exceeding
Air Quality
Requirements,
Establish
Design Targets

2. Determine
Ventilation/
Containment
Requirements

3. Determine
Control
Requirements
(Dispersion
Modeling)

5. Show Results through Modeling and Monitoring

4. Find the
Right Solution
for Air Quality
and Odor
Prevention

Odor Containment

Covers

- Structural Considerations
- Material Considerations
- Features
 - Walkable?
 - Accessibility?
 - Hatches?
- Leakage Rates
 - Acceptance Criteria:Infiltration ≤ 0.5 cfm @- 0.2" WC

Aluminum Closed Box Beam Cover

Low Profile Aluminum Geodesic Dome

Retractable Fabric Cover

Aluminum Open Web Truss Cover

Aluminum Domed Walk-In Cover

Flat Fiberglass Reinforced Plastic Cover

Odor Containment

- Enclosures/Hoods/Curtains
 - Accessibility
 - Capture Efficiency
- Launder Covers
 - Lower Cost
 - Better Accessibility
 - Lower Air Flow
 - Quiescent Zone Still Exposed

Ventilation

Criteria:

- Safety and Operator Comfort
 - -Minimum 12 ACH @ Occupied Areas
 - -Truck Loadout Areas: 12 20 ACH
- NFPA 820 "Standard for Fire Protection in Wastewater Treatment and Collection Facilities"
- Minimum -0.1-inches WC
- 50 fpm Face Velocity across Open Hatches
- Scavenging to Reduce Corrosion

■ Fans:

-FRP, SST

Odor Collection

- Collect @ Source
 - Balance System
- Duct Material Types:
 - -FRP
 - Type 316 SST
 - Type 304 SST Lined
 - Aluminum
 - -HDPE

Vapor Phase Treatment Technologies

- Chemical Wet Scrubbers
- Activated Carbon
- Biotechnologies
 - -Biofilters
 - -Biotowers
- Thermal Treatment
- Activated Sludge Diffusion
- Multi-Stage Treatment
- Others?
 - Masking Agents/Counteractants
 - lonization

Packed Tower Scrubbers

Mist Scrubbers: Older technology, slow adjustment to inlet peak loadings

Absorption & Oxidation

- -H2S absorbs more readily @ high pH
- -NH3 absorbs more readily @ lower pH
- -Oxidation improves mass transfer

Packed Tower Scrubbers

Advantages

- Effective removal for high H₂S concentrations
- Can be effective on ammonia (acid chemistry)
- Lower space requirements than biofilters or biotowers (but needs space for chemical storage)
- Effective on varying odor load concentrations
- Effective treatment on day one

- Requires observation and periodic cleanings
- Can be impacted by freezing conditions
- Chemical handling (safety) and related costs
- Limited effectiveness on organic based odors
- Potential residual chlorine smell
- Higher first costs due to chemical storage
- Mechanically complex system

Packed Tower Scrubbers

- Suppliers & Photos
 - Evoqua Water Technologies
 - Daniel Company
 - -ECS

Carbon Adsorption

- Physical adsorption of odor compounds
 - Physical Adsorption: Intermolecular forces of attraction between molecules (London dispersion forces)
- Activation of carbon creates large surface area (high temperatures)
- Systems must be designed for media replacement
- Limitations regarding targeted odor constituents
 - $-H_2S$ good
 - Ammonia bad
- Carbon types

Typical Dual-Bed Carbon System Schematic

Carbon Adsorption

Carbon System Options

- Sweet Streets
- Skid Mounted
- Single Bed
- Dual Bed
- Radial Flow
- Quad-Bed

- -Evoqua WT Odorous Air In
- -ECS
- -PureAir
- Daniel Company
- -Spundstrand

Carbon Adsorption

Advantages

- Simple to operate, small (compared to biofilters), low cost
- High rate effective for medium
 H₂S loadings (≤ 20 ppm H₂S)
- Virgin activated can remove a wide range of organic compounds
- Virgin activated good for polishing
- Effective treatment on day one

- Quickly used in high H₂S environments
- Replacement can be expensive and labor intensive
- Can be moisture sensitive
- Can cake due to grease
- Safety issues with media change-out
- Pressure drop through media high
- Media disposal issues
- High water usage for water washable carbon

General types of biofilters:

- Open vessel systems
- Closed-vessel systems
- Packaged Systems

Media Types:

- Organic (natural)
 - –soils (topsoil or permeable sandy loams)
 - -bark and wood chips (bulking agents)
 - -compost (yard waste, sludge)
 - -sea shells
 - -peat
 - -rice hulls
- Synthetic
 - -perlite
 - -plastics
 - -ceramics
 - –expanded clay
 - -pumice or lava rock
 - –Manufactured (engineered long life)

COATED MEDIA

BARK/WOODCHIPS MEDIA

LAVA ROCK MEDIA

Suppliers and Photos:

- -Bohn (soil)
- -Biorem (Coated)
- -Enduro (Clay)
- -Bord Na Mona (monafil, seashell)
- Global Environmental Solutions(Lava)

Advantages

- Relatively Simple O&M
- No chemicals
- Relatively effective for compounds other than H₂S
- Package units available for smaller airflows
- Multiple vendors available
- Long life media systems are available

- Space intensive
- Tend to have a residual *low-level* musty smell
 - media dependent
- Media Replacements
 - Long life 10-20 year media available but limited vendors
- Upper limit on H₂S concentrations they can handle
 - Sustained levels over 50 ppm problematic
- Must remain moist
- Requires acclimation and need to stay online once acclimated

Biotowers

Similar look to packed tower chemical scrubbers

- Media Types
 - lava rock
 - inert ("plastic") media
 - inert foam media
 - expanded clay
- Top spray
 - constant or intermittent
- Requires acclimation and seeding
- Often use plant water as nutrient source
 - but may require nutrient addition
- Typical 10 to 30 seconds EBRT Odorous Air.

Biotower Vendors & Photos

Daniel Company

Others: Azzuro, ECS

Evoqua

Biotowers

Advantages

- -Fully inert long life media (guaranteed 10 years)
- Shorter empty bed contact times than Biofilters
 - 10 to 20 seconds typical
 - Smaller footprint than biofilters
- -Can handle *very high* H₂S loads
- Elevated stack dispersion
- Multiple vendors available
- -No chemical handling/use
- Multi-stage beds can target organic compounds

- Strong H₂S track record, but can be less effective on organicbased odor compounds
- –More complex than biofilters
- Pressure drop higher than organic biofilters
- Leachate is acidic
- Can use large amounts of water
- Nutrient feed
- Acclimation required and must stay online

Activated Sludge Diffusion

Description

- Collect odorous air, direct to suction side of process/aeration blowers
- Diffuse into activated sludge basins via finebubble or coarse bubble diffusers
- Odors removed via absorption and biological oxidation

Advantages

- Effective odor control for a wide range of compounds
- Simple operation
- Low first cost if diffused aeration already exists
- No additional land use

- Lower removal efficiencies w/coarse bubble (95%)
- Blower corrosion (sulfuric acid)
- Fine bubble diffusers can become plugged
- Matching air flows can require complex controls

Thermal Treatment

Description

- Destroys odors by converting them to fully oxidized compounds
 - Through combustion
- Byproducts non-odorous or less odorous

Technology Examples

- Incinerators, Flares
- Recuperative Thermal Oxidizers/Regenerative Thermal Oxidizers (RTO's)
- Combustion air source for digester gas engines or boilers

Advantages

- Effective odor control for a wide range of compounds
- Effective VOC control

- Potential for SOx or NOx emissions
- Equipment complexity
- Costs !!!!!

Other Technologies

lonization

Hydroxyl Ion Fog

- Description
 - Simulates troposphere droplet chemistry to oxidize H₂S
 - lon tubes generate electromagnetic field which ionizes O2
- Advantages
 - -Simple, no chemical deliveries
- Disadvantages
 - Impacts of ozone on materials
 - Personnel exposure?
 - Effectiveness is not proven and would need to be field pilot tested

Other Technologies

Counteractants

- Two categories
 - masking agents (perfumes)
 - reactants
- Chemistries are not well defined
- Can be direct surface application
- More often spray atomized around or above the odor source
- Interference reactions
 - Removes "perception of odor"

Multi-Stage Treatment

2-stage

- Multi-Stage Chemical Scrubbers
- Chemical Scrubber + Carbon
- Chemical Scrubber + Biofilter
- Biotower + Chemical Scrubber
- Biotower + Biofilter
- Biotower + Carbon

3-stage

- Biotower + Chemical Scrubber + Carbon
- Biotower + Biofilter + Carbon

Brightwater's Odor Prevention System

Dispersion

- Dilution of odors as they disperse through air
 - -Weather
 - Buildings (downwash effects)
 - –Topography
 - Stack exit velocity
 - -Stack height
 - Temperature of air stream
- Dispersion Modeling
- Point source vs. area source

Visualization of a buoyant Gaussian air pollutant dispersion plume

Gas Phase Treatment Technologies Selection

Initial Screening

- Thermal Treatment
- Wet Scrubbers
- Activated Carbon
- Biotechnologies
 - -Biofilters
 - -Biotowers
- Ozone and Ionization
- Others?
 - Combination systems

Gas Phase Treatment Technologies Selection

Qualitative Analysis

Gas Phase Treatment Technologies Selection

• Qualitative and Cost Benefit Analysis

