Safety Moment – First Aid App

• Studies show that most workplace first aid training is forgotten over 90 days after certification

• Mobile apps are available with easy-to-follow refresher modules

Download FREE Red Cross Mobile Apps today, in the Apple App Store or Google Play
Presentation Overview

• Industry Drivers
• Force Main Condition Assessment Strategies
• Operational Example
• Case Studies
Industry Drivers
Infrastructure Investment Outlook

Source: EPA Gap Analysis
Infrastructure Investment Outlook

Source: EPA Gap Analysis
Infrastructure Investment Outlook

- **Total Assets** - $1.0 trillion (Sanitary Sewers)
- **15-20% of Public Works Infrastructure**
- **Current Annual Rehab Spending**: ±$10 Billion

![Graph showing estimated rehab needs over years](chart.png)
Average emergency repair cost for > 20-inch = $500K (WRF 2013)

Structural rehab costs 130-200% of the cost of lining rehab (TTC 2003)

Condition assessment costs = 2-6% replacement value
Why the Gap?

Impediments to Proactive Approach

- Funding: 36%
- Technical Deficiency: 29%
- Time/Personell: 14%
- Lack of Strategy: 21%
Force Main Condition Assessment Strategies
Common Force Main Defects

- Leaks
- Pitting Corrosion
- Ruptures
- Tuberculation
- Coating/Lining Damage
- Joint/weld defects

- Air binding
- Deformation
- Abrasion
- Hydrogen embrittlement (PCCP Class IV wires only)
Tiered Approach: Force Main Assessment

<table>
<thead>
<tr>
<th>Tier 1</th>
<th>Tier 2</th>
<th>Tier 3</th>
</tr>
</thead>
</table>
| - Non-destructive
- Non-intrusive
- Pipe remains in service
- Survey-level information | - Semi-intrusive
- Pipe remains in service
- Portions of the pipe be exposed
- Quantitative and detailed information | - Fully-intrusive
- Instruments inserted through pipe
- Flow must be controlled/drained
- Most specific and detailed information |
Tiered Approach

Tier 1
- Soil survey
- Surface insp.

Tier 2
- Test pits
- Direct insp.

Tier 3
- Specialty Tools
- “Smart Pigs”

“Identify Suspects”
“Confirm Rehab Needs”
“Design Repair”

Lowest Cost, Identify Issues
Higher Cost, Design Data
Tier 1: Technologies

- Non-destructive
- Non-intrusive
- Pipe remains in service
- Survey-level information
Infrared Thermal

- Provides heat signature images which may indicate leaks in water lines or effluent discharges
- Survey level technology
- No excavation/special access needed
- Equipment commercially available, moderate training required
Acoustic Methods: Leak Detection

• Acoustic Correlator (Echologics)
 – Benefits
 • Locates leaks along the pipe
 • Pipe remains in service
 • Works on all pipe sizes/materials
 – Limitations
 • Does not quantify leak rate
 – Cost approx. $20-25K/mi

• Acoustic Microphones
 – Benefits
 • Locates leaks along the pipe
 • Pipe remains in service
 • Works on all pipe sizes/materials
 – Limitations
 • Does not quantify leak rate
 • Background noise can interfere
 – Cost approx. $300/mi
Soil Survey / Corrosion Analysis

• Benefits
 – Rapid, wide deployment
 – Measures resistivity of soils (corrosion potential)
 – Survey-level tool
 – Best used in conjunction with pipe excavation

• Limitations
 – Does not provide information on full pipe length
 – Data relevant for metallic pipes/appurtenances only

• Cost approx. $10,000/mi
Acoustic Methods: Wall Thickness

• Acoustic Correlator (Echologics)
 - Benefits
 • Measures average wall thickness between nodes (stiffness in non-metallic pipes)
 • Pipe remains in service
 • Works on all pipe sizes/materials
 - Limitations
 • Does not identify discrete defects
 • Minimum amount of measurements for accurate statistical analysis may vary
Acoustic Methods (Emission Monitoring)

• Advantages
 – Monitors sudden appearance or propagation of microscopic cracks
 – Monitors sudden break of a prestressed wire in PCCP

• Limitations
 – Can only detect what is happening during monitoring period (no indication about past deterioration)
 – Installation of sensors may need interruption of service
 – Quantitative information (e.g., size) about the crack is not available
Pressure Flow Monitoring

Ultrasonic Transit-time Strap-on

• Benefits
 – No in-line insertion required
 – Accuracy +/- 2%

• Limitations
 – Average flow rate
 – Best with clean water applications

Electromagnetic Insertion

• Benefits
 – Accuracy +/- 2% point velocity
 – Bi-directional flow
 – Remote data transmission

• Limitations
 – Access to 1" tap/ball valve
 – Challenging high-pressure insertion
 – Pipe diameters 8"-78"
Tier 2: Technologies

- Semi-intrusive
- Pipe remains in service
- Portion of the pipe be exposed
- Quantitative and detailed information
Internal Hydrophones

• JD7 “Investigator” / “LDS1000”
 – Benefits
 • Locates leaks and gas pockets
 • Pipe remains in service
 • Works on all pipe sizes/materials
 – Limitations
 • No pipe wall assessment data *Yet*
 • No pipe wall assessment data

• Pure Sahara
 – Benefits
 • Locates leaks and gas pockets
 • Pipe remains in service
 • Works on all pipe sizes/materials +6” (2” access)
 • Measures specific defect location
 – Limitations
 • No pipe wall assessment data *Yet*
 • Deployment distance limited by number of bends in pipe
 • Tethered system requires numerous access points
Free-Swimming Internal Hydrophones

- Pure “SmartBall”
 - Benefits
 - Locates leaks and gas pockets
 - Pipe remains in service
 - Works on all pipe sizes/materials +6” (4” access)
 - Limitations
 - Defect location is approximate
 - No pipe wall assessment data

- JD7 “Bullet”
 - Benefits
 - Locates leaks
 - Pipe remains in service
 - Works on all pipe sizes/materials
 - Records visual images
 - Limitations
 - Defect location is approximate
 - No pipe wall assessment data
 - Tethered system for retrieval
Ultrasonic / Pit Depth Measurement

• Benefits
 – Quantitative measurement
 • Pipe wall thickness
 • Pit depth
 – Simple methods and tools

• Limitations
 – Exposure of pipe exterior required
 – Difficult to determine localized metal loss inside pipe with ultrasonic
 – Most commonly used on metallic pipes

• Cost approx. $15,000/mi
Guided Wave

• Benefits
 – Screening of long lengths of pipe
 – 100% of pipe wall is inspected
 – Detects corrosion in insulated and buried pipes

• Limitations
 – Variable Range: 1”-60” and 60-1,000LF
 – Exposure of pipe exterior required
 – Applies to metallic pipes only
 – Extensive data post-processing
Broadband Electromagnetic

• External Method
 – Benefits
 • Measures localized wall thickness
 • Pipe may remain in service
 • Measures through linings/corrosion
 – Limitations
 • Ferrous pipe only
 • Must expose pipe
 • Extensive data post-processing/interpretations
Magnetic Flux Leakage (External)

• Advantages
 – Tools available for small and large diameter pipes
 – Identifies remaining wall thickness
 – Identifies size and location of defects (including pits)

• Disadvantages
 – Excavation of buried pipes and replacement of coating or insulation are required, which make it economically questionable
 – Still emerging as technology for water pipelines
Bracelet Probe (PICA)

• Benefits
 – Hand-held
 – Reads through coatings/linings
 – Identifies wall pitting locations, and in some instances can estimate pit depth/size
 – Faster post processing

• Limitations
 – Newer technology
 – Best used for “spot checks”
 – Production rate 10 ft/min

• Cost approx. $15,000/day
Tier 3 Technologies

- Fully-intrusive
- Flow must be controlled/drained
- Instruments inserted through pipe
- Most specific and detailed information

Structural Condition

- Internal CCTV
- Internal Laser
- Internal Electromagnetic
- Acoustic Impact Echo
- Coupons
Coupons

• Benefits
 – Multiple structural and metallurgic tests may be run on the coupon
 – Most definitive data set
 – Possible to remove coupons from an operational main by using tapping technologies

• Limitations
 – Provides discrete point information only
 – Requires portion of the pipe to be exposed
Ultrasonic Pig

• Benefits
 – Measures localized wall thickness
 – Free swimming or tethered

• Limitations
 – No leak/gas pocket detection
 – Cannot measure through linings
 – Cannot detect pitting
 – Large insertion assemblies required
 – Extensive cleaning required
 – Ferrous pipe only
Broadband Electromagnetic (Internal)

• Benefits
 – Measures localized wall thickness
 – Measures through linings/corrosion

• Limitations
 – Pipe must be dewatered & cleaned
 – Time consuming (non-continuous scan)
 – Unable to detect pin-holes/pits
 – Large insertion assemblies required
 – Extensive post-processing/interpretation
 – Ferrous pipe only
Electromagnetic (Internal)

- Pure PipeDiver/Robotic
 - Benefits
 - Locates broken prestressed wires in PCCP
 - Locates areas of extensive wall loss in metallic pipes
 - Free swimming and tractor options
 - Limitations
 - Must control flow rate
 - Large insertion assemblies required
 - Not suitable for detecting pitting corrosion or joint defects

- PICA SeeSnake
 - Benefits
 - Measures localized wall thickness and pitting
 - Measures through linings
 - Free swimming or tethered
 - Limitations
 - Must control flow rate
 - Large insertion assemblies required for +24” sizes
 - Extensive cleaning required
 - Metallic pipe only
Magnetic Flux Leakage (Internal)

• Advantages
 – Precise comprehensive inspection
 – Identifies remaining wall thickness
 – Identifies size and location of defects (including pinhole pitting)

• Disadvantages
 – Pipe must be dewatered, and cleaned (some exceptions)
 – Still emerging as technology for water pipelines
 – Ferrous, unlined pipes only (some exceptions)
 – High cost
Acoustic Impact Echo

• Benefits
 – Detects delamination of concrete pipes
 – Detects voids beyond the pipe wall
 – Lower-cost inspection method
 – Works through paint/coatings
 – Only one side of the structure needs to be accessible for testing

• Limitations
 – Requires dewatered pipe
 – Most applicable for concrete structures
 – Discrete point measurements only
Laser

• Benefits
 – High-precision scan of pipe interior dimensions to measure deformation
 – Contributes to design for CIPP, sliplining, swagelining, etc.

• Limitations
 – Only functions above water level
 – Cannot distinguish scanned materials (can be influenced by tuberculation or buildup)
Operational Example
Operational Example

- Force Main Network (20 miles)
- DIP and CCP
- Corrosive soils
- Leakage concerns
Operational Example

• Tier 1
 – Soil survey
 – Appurtenance inspection

• Tier 2
 – Test pits

• Tier 3
 – Electromagnetic
Operational Example

WWTP
Tier 1 – Soil Survey & Appurtenance Inspection
Tier 1 – Soil Survey & Appurtenance Inspection Results

Hot Soils

Multiple Leaks

WWTP
Tier 2 – Test Pits
Tier 2 – Test Pit Results

Pipes in good condition: Leaks not related to corrosion

Extensive Pitting

WWTP
Tier 3 – Electromagnetic

Continue monitoring
Tier 3 – Electromagnetic Results

Less severely damaged: Phase 2 Rehabilitation

Most severely damaged: Phase 1 Rehabilitation

WWTP
Cost Comparison: 20 mile force main network

<table>
<thead>
<tr>
<th>Assessment Technology</th>
<th>Conventional</th>
<th>Tiered Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Survey/Appurtenance Inspection</td>
<td>N/A</td>
<td>$200,000</td>
</tr>
<tr>
<td>Test Pits</td>
<td>N/A</td>
<td>$200,000 Assume 50% of major force mains are investigated</td>
</tr>
<tr>
<td>Advanced Investigations (Electromagnetic)</td>
<td>$1,000,000</td>
<td>$200,000 Assume 50% major force mains investigated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10% requires advanced assessment</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$1,000,000</td>
<td>$600,000</td>
</tr>
</tbody>
</table>
Project Background

- 9,800 LF of 36”-54” diameter C301 PCCP (Lined-Cylinder Pipe)
- Constructed in early 1970s
- Approx. 4,300 LF subaqueous, up to 60 ft depth
- Portions of subaqueous pipe uncovered
- Wastewater can reach 140°F
- Average flow 18-24 MGD
- Facility only has two days per year of low flow < 4 MGD
Portions of Subaqueous Pipe Uncovered

- Original construction included both restrained and unrestrained joints
- Installation was performed by commercial divers into a dredged trench
- Prior surveys indicated erosion had exposed portions of the water crossing
Project Drivers

- Industrial asset management strategy included condition assessment of critical pipelines
- Increased regulator sensitivity due to river crossing and constituency of industrial wastewater
- Approaching presumed half-life for PCCP
- Potential replacement costs on the order of +$15M
Condition Assessment Approach

Tier 1 – Site Reconnaissance and Appurtenance Inspection
- Identified locations most susceptible to external corrosion
- Scouting locations for possible access improvements

Tier 2 – Test Pits and Coupons
- Confirmed possible deterioration of PCCP

Tier 3 – Electromagnetic Methods
- Devices inserted into the pipe at special access structures
- Electromagnetic sensors detect prestressed wire breaks
- In-line acoustic sensors listen for leak frequencies and gas pockets
Condition Assessment Approach

• Final Tier 3 Technology Selection
 – Paid companies for visit; improves correspondence and pre-planning
 – Electromagnetic “smart pigs” determined viable
 – Tethered/powered crawlers selected to minimize risk of equipment loss
 – Transponders map the pipeline location
 – Would required special access to deploy robotic equipment
 – Very narrow 1-week plant shut-down window for prep, access, inspection, and restoration
Special Access Installations

New Access Installation

New Access Installation
Design Layout for 24” Access Taps
Providing Condition Assessment Access

Downstream Access Tap & Flow Diversion

24” Pipe Coring

Upstream Access Tap
Special Access Ways Required Geotechnical Support
Electromagnetic Robot Deployment
In-Line Acoustic Equipment Deployment
Sonde Tool Deployment

• Difficulty tracking crawler from the surface
• Portable detection sensors limited by surface topography
• Future technology generations may include specific underground transponders and location sensor networks (like those used for HDD operations) to accurately track the device and map the alignment.
Inspection Results and Analysis

Number of Wire Breaks

<table>
<thead>
<tr>
<th>Pipe</th>
<th>Location</th>
<th># Breaks</th>
<th>Break Length</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2230</td>
<td>50/3B</td>
<td>10</td>
<td>12.0</td>
<td>Left SP in by sheets. Data indicates 16</td>
</tr>
</tbody>
</table>

- [Detailed table of inspection results](table).

Analysis

- Preliminary analysis suggests potential stress concentrations.
- Further investigation is recommended for areas with 10 or more breaks.

Figure 3.8: Stresses in 42-inch Class A PCCP with 100 Wire Breaks.

Concrete Core

Mortar Coating

- [Visual representation of stresses.](image)
Seven Pipe Segments on 42” PCCP Adjacent to Aerated Lagoon Recommended for Replacement
Owner Elected Conservative Approach to System Improvements and Replaced Total 800 LF Reach

Pipe Condition

- At-Risk
- Good Condition

Decided Action

- Replacement
- Monitoring
Owner Elected Conservative Approach to System Improvements and Replaced Total 800 LF Reach

Replace Existing 42"

Aerated Lagoons
Hot Line Tapping Bypass
PCCP-DIP-HDPE Repair Combination
Couplings are Key
Making Connections and Restraining Forces
Overall Project Costs

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe Access Construction</td>
<td>$166,000</td>
</tr>
<tr>
<td>Electromagnetic Inspection</td>
<td>$260,000</td>
</tr>
<tr>
<td>Pipe Repairs</td>
<td>$850,000</td>
</tr>
</tbody>
</table>
Project Challenges, Lessons Learned, and Next Steps

• Challenges
 – High level of regulatory interest (typical for large diameter forcemain water crossings)
 – Limited access
 – Extremely tight and critical activity schedule
 – High temperature wastewater

• Lessons learned
 – Constructing access ways requires thoughtful planning, design, installation
 – Industrial wastewater stream resulted in thick layer of buildup
 – Core sample and petrography tests important to validate NDE
 – Introduction of repair/rehabilitation products different than the host pipe requires special accommodations (restraint, thermal effects, etc.)

• Next Steps
 – Ongoing forcemain monitoring and contingency plan
Thank You

Dan Buonadonna, PE
Daniel.Buonadonna@CH2M.com